AIs Discovering Vulnerabilities
I’ve been writing about the possibility of AIs automatically discovering code vulnerabilities since at least 2018. This is an ongoing area of research: AIs doing source code scanning, AIs finding zero-days in the wild, and everything in between. The AIs aren’t very good at it yet, but they’re getting better.
Here’s some anecdotal data from this summer:
Since July 2024, ZeroPath is taking a novel approach combining deep program analysis with adversarial AI agents for validation. Our methodology has uncovered numerous critical vulnerabilities in production systems, including several that traditional Static Application Security Testing (SAST) tools were ill-equipped to find. This post provides a technical deep-dive into our research methodology and a living summary of the bugs found in popular open-source tools.
Expect lots of developments in this area over the next few years.
This is what I said in a recent interview:
Let’s stick with software. Imagine that we have an AI that finds software vulnerabilities. Yes, the attackers can use those AIs to break into systems. But the defenders can use the same AIs to find software vulnerabilities and then patch them. This capability, once it exists, will probably be built into the standard suite of software development tools. We can imagine a future where all the easily findable vulnerabilities (not all the vulnerabilities; there are lots of theoretical results about that) are removed in software before shipping.
When that day comes, all legacy code would be vulnerable. But all new code would be secure. And, eventually, those software vulnerabilities will be a thing of the past. In my head, some future programmer shakes their head and says, “Remember the early decades of this century when software was full of vulnerabilities? That’s before the AIs found them all. Wow, that was a crazy time.” We’re not there yet. We’re not even remotely there yet. But it’s a reasonable extrapolation.